# Yapısal Eşitlik Modelleri: Temel Kavramlar ve Örnek Uygulamalar 

Nebi Sümer*<br>Orta Doğu Teknik Üniversitesi


#### Abstract

Özet Yapısal eşitlik modelleri (YEM) öļ̧ülen ve gizil değişkenler arasındaki "nedensel" ilişkileri sınamada kullanılan kapsamlı bir istatistiksel yaklaşımdır. YEM'in geleneksel yöntemlere olan üstünlükleri nedeniyle, sosyal bilimciler arasında son yıllarda model smama ve veri analizlerinde bu yöntemin kullanılmasına yönelik ilginin arttığı gözlenmektedir. Bu makalede YEM'e ilişkin temel kavram ve konuların kısa bir özeti sunulmakta ve başta model betimleme, tanımlama, hesaplama ve değerlendirme olmak üzere YEM'de kullanılan stratejiler ve aşamalar anlatılmakta ve doğrulayıcı faktör analizi ile yapısal modeller arasındaki farklılıklara değinilmektedir. Yazının son bölümünde YEM'in uygulanmasına yönelik iki örnek sunulmaktadrr: Birinci örnek, LISREL ile yapılan bir doğrulayıcı faktör analizi uygulamasımı "Çocuk Yetiştirme Stilleri Ölçeği" maddelerinin faktör yapısımı inceleyerek göstermektedir. Ikinci örnekte ise uyaran arama ve saldırganlık değişkenlerinin trafik ihlalleri aracılığıyla ortalama hızı yordadığı gizil değişkenli bir model YEM kullanılarak sinanmaktadır.


#### Abstract

Structural Equation Modeling: Basic Concepts and Applications Structural equation modeling (SEM) is a comprehensive statistical approach used in testing hypotheses about "causal" relationships among measured and latent variables. In recent years, considering its advantages over more conventional statistical techniques, there has been a growing interest in using SEM in analyzing data and testing models among social scientists. In this article, a brief review of basic concepts and issues associated with SEM, including specific strategies and stages in model testing, such as model specification, identification, estimation, and evaluation and differences between confirmatory factor analysis and structural model testing, was presented. Two specific examples regarding the application of SEM were presented in the final part of the paper. First example presents an application of confirmatory factor analysis with LISREL on the items of Parenting Style Questionnaire to examine its factor structure. Second example involves testing a proposed model with latent variables in which sensation seeking and aggression were expected to predict average speed through traffic violations.


[^0]Geçtiğimiz yüzyıl boyunca, başta psikologlar olmak üzere sosyal bilimciler ele aldıkları değişkenleri çok sayıda istatistik tekniği kullanarak ve oldukça karmaşık hesaplamalar yaparak incelemeye çalışmıslardır. Ancak son 20 yılda, çok değişkenli veriler, güçlü bilgisayar programlarıyla, daha az sayıda hesaplama yapılarak, daha basit tekniklerle ve psikologların asıl ilgilendikleri "altta yatan süreçleri" anlamaya yönelik istatistikler kullanarak analiz edilmeye başlanmışlardır. Bu eğilimin bir sonucu olarak, son yıllarda psikoloji alanındaki bilimsel makalelerde yapısal eşitlik modelleri ${ }^{1}$ (structural equation modeling), gizil değişken analizi (latent variable analysis), doğrulayıcı faktör analizi (confirmatory factor analysis) gibi terimler sıklıkla görülmektedir. Çoğunluğun "LISREL" analizi olarak ifade ettiği (bu aslında bir istatistik tekniği değil, ticari bir istatistik paket programının adıdır '"Linear Structural Relations") bu tür analizler, özellikle kuramsal bir temeli olan nedensel modellerin sınanmasında yaygın olarak kullanılmaktadır. Ancak, Yapısal Eşitlik Modelleri (YEM) ve Doğrulayıcı Faktör Analizi (DFA) LISREL dışında başta EQS ve AMOS olmak üzere çok sayıda istatistik programıyla yapılmaktadır.

Yaklaşık 30 yıl önce, başta Jöreskog (1973) olmak üzere bir çok araştırmacı tarafından sosyal bilim alanına uyarlanan ve Bentler (1980) tarafından psikoloji alanında ayrıntılı olarak betimlenen gizil değişken analizi, çok sayıda gözlenen ya da ölçülen değişken tarafından temsil edilen "gizil" yapıları içeren çok değişkenli istatistik analizlerini tanımlamak için kullanıl-
mıştır. YEM ve DFA bu tür analizlerin özel uygulama alanlarına karşılık gelir. Gizil değişkenli analizlerin en eski ve en yaygın uygulama alanı doğal olarak faktör analizleridir. Ancak, model sınama geleneği daha çok değişkenler arasında öngörülen nedensel ve tek yönlü ilişkilerin incelendiği ve "path" analizi olarak bilinen regresyon kökenli analizlere kadar uzanır. Bu nedenle modelde öngörülen her bir bağlantıyı temsil edecek sayıda regresyon eşitliği hesaplamaya dayanan geleneksel model sınama yaklaşımı, gelişmiş bilgisayar programlarıyla yapılan YEM analizlerinin öncüsü kabul edilir. Bu anlamda YEM, regresyon modelindeki değişkenler arasındaki yordayıcı yapısal ilişkiyle, faktör analizindeki gizil faktör yapılarını kapsamlı tek bir analizde birleştirmektedir. Diğer bir deyişle "LISREL" analizleri olarak bildiğimiz teknikler en basit anlatımla faktör analizi ve regresyonun bir uzantısıdır ve çok değişkenli istatistik analizleri için geçerli olan temel varsayımlar bu teknikler için de geçerlidir. Bu yazının temel amacı, ülkemizde YEM ve DFA analizi konularında Türkçe kaynak eksikliğini dikkate alarak, bu teknikleri temel kavramlarıyla tanitmak ve iki örnek uygulama ile araştırmacılara yol göstermektir. Takdir edileceği gibi, YEM'e ilişkin bütün temel kavramları, sorunları ve analiz türlerini bir yazıda anlatmak mümkün değildir. Her geçen yıl daha kapsamlı ve dakik istatistik tekniklerini içine alarak gelişen bu alanda şimdiden çok sayida kitap, yüzlerce bilimsel makale, farklı dergilerde özel sayılar ve nihayet bu tekniğin adını taşıyan bir süreli yayın (Structural Equation Modeling: A Multidisciplinary Journal; Yayımcı: Lawrence Erlbaum) mevcuttur.

[^1]
## YEM ve DFA'nin Avantajlanı ve Temel Kavramlar

YEM gözlenen ve gizil değişkenler arasındaki ilişkilere yönelik denenceleri sınamaya yarayan kapsamlı bir istatistik yöntemidir (Hoyle, 1995). YEM'in geleneksel yöntemlere göre çok sayıda üstünlükleri vardır. Bunların başında YEM'in daha dakik ve basit olması gelir. Örneğin geleneksel açıklayıcı faktör analizinin tersine, DFA faktör ağırlıkları ve bunlara ilişkin parametrelerin yanı sıra faktörlerin ve sınanan modelin genel kalitesine ilişkin bilgiler verir. Ikinci üstünlüğü ise birden fazla sonuç ve aracı değişkeni yordamanın psikoloji araştırmaları için çok önemli olmasından kaynaklanmaktadır. Geleneksel yöntemler karmaşık ilişki örüntüsüne sahip olan ve özellikle çok sayıda aracı (mediator) ve biçimlendirici (moderator) değişken içeren modelleri snnamada yetersiz kalmakta ve bir model çok sayıda istatistiksel aşama ve eşitlikle sınanabilmektedir. YEM ve DFA'da ise bu tür karmaşık modeller genellikle tek bir işlemle yapılabilmekte ve model, parametrelerinin her birine ilişkin anlamllık ve karşlaştırma istatistikleri bu analizden elde edilebilmektedir. Üçüncü önemli avantajı ise, tek bir analizle hem yordamaya ilişkin hem de yordamada kullanılan değerleri elde etmek için kullanılan ölçüm araçlarının psikometrik kalitesine ilişkin bilgileri aynı anda sunmasidır (Kelloway, 1998).

YEM'in en önemli üstünlüğü ise, görece ölçüm hatalarından arınmış olan gizil (latent) değişkenler arasındaki ilişkileri hesaplama ve yordama kapasitesine sahip olmasidır (Hoyle, 1995). Gizil değişkenler YEM'in en önemli kavramlarından biridir ve araştırmacıların gerçekte ilgilendikleri zeka, güdü, duygu, tutum gibi soyut kavramlara ya da psikolojik yapılara karşlık gelir. Bu yapıları ancak dolaylı olarak,
belirli davranışlar ya da göstergeler temelinde ölçülen değişkenler yardımıyla gözleyebiliriz. Ölçüm hatalarından arınmış gizil değişkenlerin popülasyon parametrelerine yakın değerler vermesi beklenir. Bilindiği gibi, gözlenen ya da ölçülen değişkenler belirli oranlarda ölçüm hatası (ya da güvenirlik eksikliği) içerirler. Ancak bu değişkenler arasındaki ilişkiler incelenirken genellikle değişkenlerin güvenirlik eksikliği ya da ölçüm hataları, dikkate alınmadan sıfır hata ile ölçülmüş oldukları varsayılır. Örneğin, ölçeklerden elde edien puanların gösterge olarak kullanıldığı durumlarda 80 alfa iç tutarlık katsayisına sahip bir ölçekle ölçülen değişkende gerçekte ölçüm hatasının oranı \% 36'dır (1-.80 ${ }^{2}$ ). Değişkenlerdeki ölçüm hataları ele alınan değişkenler arasındaki gerçek ilişkinin zayıflamasına ya da daralmasına neden olur. Çok sayıda gözlenen değişken tarafından (bir anlamda onların ortak varyansı ile) ölçülen gizil değişkenin hata varyansı (onu yordamada kullanılan her bir ölçümün hatası olsa bile) sıfırdır. Diğer bir ifadeyle gizil değişken, faktör analizindeki "ortak faktörlere" karşılık gelir ve onu ölçmede kullanılan ölçümler arasında ortak olan ne varsa onunla tanımlanır. Buna bağlı olarak gizil değişkenler arasındaki ilişkilerin ya da yordayıcı bağlantıların hesaplanmasında da ölçüm hataları en aza indirilmiş olmaktadır. Örneğin, Beck Depresyon Envanterinin ve Rosenberg Özsaygı Envanterinin .80 güvenirlik katsayısına sahip olduğunu varsayalım. Bu ölçeklerle ölçülen depresyon ve özsaygı değişkenleri arasındaki korelasyon ölçüm hataları dikkate alınmadan (düzeltilmeden) hesaplandığ 1 için, gerçekte popülasyonda olan ilişkiden daha zayıf bir düzeyde araştırma sonuçlarına yansır. Depresyon ve özsaygı gizil değişkenler olarak ele alındığında ve her biri en az üç ayrı ölçümle ölçüldüğünde (örneğin, depresyon için Beck Depresyon En-
vanterinin yanı sıra psikolog ve aile değerlendirme ölçekleriyle de ölçüldüğünü düşünelim) bu ölçümlerde hata olmasına karşın onları temsil eden gizil değişkenin hata varyansı sıfırdır. Böylece iki değişken arasında popülasyon değerlerine daha yakın bir hesaplama yapılabilir. Son olarak hem YEM hem de DFA, gizil değişkenler arasındaki ilişkileri betimleyen (önerilen) modelle elde edilen (gözlenen) verinin ne oranda uyuştuğuna ilişkin ayrıntılı istatistikler sunar. Geleneksel testlerin aksine bir tek anlamlllık değeri vermez; verinin uygunluğuna göre ve ölçülen parametrelere ilişkin çok sayıda istatistiksel ölçüt kullanılarak bulgular değerlendirilir.

## DFA ve YEM'in Farklı Kullanımlan

YEM ve DFA temelde aynı mantığa ve hesaplama tekniğine dayanmasına karşın kullanımda farklı kavramlar olarak ele alınmaktadır. YEM ile genellikle önerilen kuramsal bir modelin sınanması ya da bu bağlamda denencelerin test edilmesi amaçlanmaktadır ve genellikle sonuçta birden fazla alternatif modelin karşılaştırılması yoluyla veriyi en iyi tanımlayan modelin saptanması hedeflenir. Bu nedenle YEM geleneksel regresyon modellerinin bir uzantısıdır. DFA ise psikoloji literatüründe daha çok ölçek geliştirmede ve geçerlik analizlerinde kullanılmakta ve önceden belirlenmiş ya da kurgulanmış bir yapının doğrulanması ya da teyit edilmesi amacını taşımaktadır ve geleneksel kökeni genel faktör analizlerine dayanır.

Bilindiği gibi genel açıklayıcı (exploratory) faktör analizi çok sayıdaki değişkenin altında yatan psikolojik yapıları ortaya çıkarmak amacıyla uygulanır. Burada değişkenler arasındaki ilişkiye dayalı olarak bir değişken (ya da madde) herhangi bir faktörle ilişkili olabilir ve
ondan yük alabilir. Dolayısıyla geleneksel faktör analizinde belirli bir ön beklenti ya da denence olmaksızın faktör ağırlıkları temelinde verinin faktör yapısı belirlenir. DFA ise belirli değişkenlerin bir kuram temelinde önceden belirlenmiş faktörler üzerinde ağırlıklı olarak yer alacağı şeklindeki bir ön beklentinin sınanmasına dayanır. Bu nedenle analizde yer alacak değişkenler, kuramın sayıltıları doğrultusunda seçilir ve bu değişkenlerin istenilen faktörlerde ne oranda yer aldıklarına bakılır. Genel faktör analizinde kaç adet faktörün beklendiği bilinmezken, DFA'da faktör sayısı kesin olarak belirtilir ve test edilir. Bunun en yaygın uygulama alanı, ilerleyen bölümlerdeki örnek uygulamada da gösterildiği gibi, belirli maddelerin önceden belirlenmiş alt boyutlarda (gizil değişkenlerde) yer alması beklenen ölçeklerin faktör yapısını incelemek ve doğrulamaya (ya da yanlışlamaya) çalışmaktır (sosyal bilimlerde faktör analizi kullanımı için bakını, Kenny, Kashy ve Bolger, 1998)

Geleneksel faktör analizi yöntemleriyle, başta SPSS olmak üzere bir çok istatistik programında da farklı bir yöntem izlenerek DFA yapılabilir. Bu yaklaşımda faktör, çözümü beklenen faktör sayısına sınırlanarak, öngörülen değişkenlerin (maddelerin) istenilen faktörlerde yüklenmesi beklenir. Ancak bu yöntemde sadece faktör yapısı ve ağırıklar incelenebilir; model uygunluğunun test edilmesi mümkün değildir. LISREL gibi YEM programları ile yapılan DFA'da ise gizil değişkenler olarak tanımlanan faktörler arası ilişkiler, faktör ağırlıkları ve karşılaştırmalı modeller sınanabilir ve her bir modelin uygunluk derecesi elde edilebilir. Ayrica kurama dayalı olarak yeni DFA yaklaşımında, faktörler arasındaki ilişkiler, faktörlerde yer alan değişkenlerin kompozisyonu ve bunların
hataları arasındaki ilişkiler vb. istatistiksel olarak değişimlenebilir. Yeni yaklaşımın burada belirtilen (ve yer darllğı nedeniyle belirtilemeyen) bir çok üstünlüğü göz önüne alınarak çoğu araştırmacı tarafından DFA, YEM'in özel bir uygulama alanı olarak görülmektedir ve aşağıda anlatılan ölçüm modeli de tipik bir DFA olarak ele alınmaktadır.

Aşağıda, önce YEM'e ilişkin temel kavramlar ve model sınamada başvurulan stratejiler özetlenmekte, daha sonra da iki örnek uygulama sunulmaktadır.

## Model Betimleme (model specification)

YEM'i kullanarak model sinama, sırasıyla model betimleme, parametreleri tanımlama, bunları hesaplama, modelin eldeki veriyle uyumunu sınama ve son olarak gerektiğinde modifikasyonlar yapma şeklinde beş aşamalı bir süreçtir. Bu süreç her zaman bir modelin betimlenmesiyle başlar. Yukarıda belirtildiği gibi, YEM genellikle bir kuram temelinde üretilmiş denencelere göre değişkenler arasındaki ilişkilerin betimlendiği modellerin sınanmasında kullanılmaktadır. Değişkenler, gizil değişkenler ve gözlenen değişkenlerden oluşur. Gözlenen değişkenler YEM dilinde göstergeler (indicators) olarak ifade edilir ve bunlar araştırmacının doğrudan ölçtüğü ya da gözlediği değişkenleri ifade ederler. Bir gizil değişken en az iki gösterge tarafindan tanımlanır. YEM'de betimleme, gizil değişkenler arasındaki ya da bir gizil değişkenin göstergesi olmayan gözlenen değişkenlerle gizil değişkenler arasındaki ilişki ya da ilişkilerin açıklanması anlamına gelir. Geleneksel YEM yaklaşımında modelde yer alan değişkenler arasındaki bütün ilişkilerin doğrusal olduğu varsayılır. Bir modelde değişkenler arasında iki tür doğrusal ilişki olabilir: nedensel
yönü betimlenmiş olan ve bir yönü olmayan ilişkiler. Yönü betimlenmiş ilişki bir denenceyle belirtilmiş olup bir değişkenin diğer değişken üzerindeki etkisini ifade eder (bu etki genellikle tek yönlü oklarla gösterilir). Bu etki doğrudan ya da başka değişken(ler) aracılığıyla dolaylı bir etki olabilir. Örneğin, "düşük özsaygı depresyonu yordar" şeklindeki bir denencede böyle bir ilişki söz konusudur.

Yönü betimlenmeyen ilişki gizil değişkenler arasındaki yapısal korelasyonlara karşılık gelir ve bu durumda bir etkiden ya da yordamadan bahsedilemez (bunlar genellikle iki yönlü oklarla gösterilir). Örneğin, "muhakeme becerisi rotasyon becerisi ile ilişkilidir" varsayımı bu tür korelasyonal bir ilişkiyi ifade eder. YEM'de bağımsız değişkenler arasında, yordayıcı olmayan bu türden bir ilişki olduğu varsayılır. Gelecek bölümlerde anlatılan ölçüm modelinde de bütün gizil değişkenler arasında sadece bu türden bir ilişki hesaplanır. Bir modelde, yönü belirlenmiş olan ve olmayan bütün ilişkilerin rakamsal bir değeri vardır. Yönü betimlenmiş ilişkilerdeki rakamsal değer regresyon katsayısı değerlerine ve bir regresyonda değişkenlere verilen ağrrlıklara karşılık gelir. Yönü betimlenmeyen değişkenlere verilen değerler ise doğrudan değişkenler arasındaki korelasyonlardır.

Konuyu daha iyi anlamak için bu aşamada Şekil 1'de gösterilen basit modeli sınadığımızı düşünelim: Bu modelde uyaran arama ve saldırganlık eğilimlerinin sürücülerin trafik ihlallerini, ihlallerin de araç kullanma hızını yordayacağı varsayılmaktadır. Ayrıca, saldırganlı̆gın hız üzerinde bir etkisi olması beklenmezken, uyaran aramanın hızı hem doğrudan hem de dolaylı olarak yordayacağı öngörülmüştür. Bu modelde uyaran arama ve saldırganlık bağımsız değişkenler olarak yer almaktadır (YEM termi-
nolojisinde "exogenous" ya da dışsal değişkenler). Trafik ihlalleri aracı değişken ve trafik kazası sayısı ise sonuç değişkeni ("endogenous" ya da içsel değişken) temsil etmektedir. Doğal olarak, bağımsız değişkenler arasında yönü olmayan (korelasyon) ilişki, bağımsız değişkenlerle ihlaller arasında doğrudan, hızla da dolaylı olarak yönü belirli yordayıcı bir ilişki önerilmektedir. Bu modelde ihlaller aracı değişken konumundadır ve uyaran aramanın dolaylı etkisinin bu değişken tarafından bağımlı (sonuç) değişkene taşınacağı varsayılmaktadır. YEM'in temel yapısını doğrudan etkilerin oluşturmasına karşın, dolaylı etkilere ilişkin parametreler de hesaplanabilir (dolaylı etkiler için bkz, Baron ve Kenny, 1986). Ancak, YEM'de aracı değişkenler, bağımsız değişkenler temel alındığında bağımlı değişken, bağımlı değişkenler temel alındığında ise bağımsız değişken olarak tanımlanır.
ayrilır. Sabit parametre veriden çıkarsanmaz (hesaplanmaz) ve bu parametrenin rakamsal değeri genellikle sıfıra eşitlenir. Bazı durumlarda parametrelere sıfır dışında belirli değerler de verilebelir. Betimleme sürecinde bütün bu değerlerin açıklanması, betimlenmesi gerekir (MacCallum, 1995). Örneğin Şekil 1'deki modelde, saldırganlıkla hız arasındaki doğrudan ilişki sabit (s1fıra eşitlenmiş) bir parametredir. Serbest parametre ise veriden çıkarsanan ve araştırmacının değerinin "sıfır" olmadığına inandığı parametredir. Modelde tek ve çift yönlü oklarla gösterilen bütün ilişkiler serbest parametreleri gösterir. Sabit ve serbest parametreler YEM'in iki temel unsuru olan "ölçüm modeli" ve "yapısal modeli" betimlemek için de kullanılır. Ölçüm modeli, gizil değişkenlerin tanımlandığı ve bütün değişkenler arasında yönü tanımlanmamış ilişkilerin (korelasyonların) hesaplandığı modeldir ve bu modelde bütün parametre-

> Bağımsız Değişkenler Bağımlı (Aracı) Değişken Bağımlı Değişken


Şekil 1. Önerilen Model

Bir anlamda YEM'de betimleme, modeldeki değişkenler arasındaki ilişkilere ilişkin bütün parametrelerin ayrıntılı olarak açıklanması anlamına gelir. Bu parametreler kabaca sabit (fixed) ve serbest (free) parametreler olarak ikiye
ler serbest bırakılmıştır. Iyi bir YEM analizinin ölçüm modeliyle başlaması gerekir (Anderson ve Gerbing, 1988). Yapısal model ise gizil değişkenler ve bir gizil değişkenin göstergesi olamayan değişkenler arasındaki ilişkilerin yönü-
nün betimlendiği ve bazı parametrelerin sabitlendiği modeldir.

YEM Modelinin Şekilsel Gösterimi: YEM betimlenmesinde gizil değişkenler arasındaki ilişkilere dair parametrelerin yanı sıra modelde yer alan bütün gösterge değişkenlerin ve hata varyanslarının betimlenmesi gerekir. Şekil 1'de önerilen modeli tam anlamıyla bir YEM modeli olarak tanımlamak için Şekil 2'de gösterildiği gibi göstergeleri ve diğer parametreleri betimleyelim: Anlatımı basitleştirmek adına her bir gizil değişkenin iki gösterge ile tanımlandığını varsayalım. Uyaran aramanın Arnett'in (1994) Uyaran Arama Ölçeği'nin iki alt ölçeğinin; yenilik arayışı ve duygu yoğunluğu ile ölçüldüğünü, saldırganlığın Buss ve Perry'nin (1992) Saldırganlık Ölçeği'nin iki alt boyutu olan fiziksel saldırganlık ve hostilite alt boyutları ile ölçüldüğünü, ihlallerin ise Reason ve arkadaşlarının (1990) Sürücü Davranışları Anketi'nin sıradan ihlaller ve saldırgan ihlaller alt ölçekleriyle ve son olarak hız gizil değişkeninin tek maddelik şehirler arası ve şehir içi yollarda sürücülerin rapor ettikleri ortalama hız (km) değerleri ile öl-
çüldüğünü düşünelim. Şekil 2'de görüldüğü gibi, yukarıda değinilen gizil değişkenler arasındaki ilişkilerin yanı sıra, bütün değişkenlerdeki hata varyansları ve göstergelerin faktör ağırlıları da modelde yer almaktadır. Geleneksel olarak YEM'de gizil değişkenler elipslerle ya da köşeleri ovalleştirilmiş dikdörtgenlerle gösterilir, göstergeler ise kare ya da dikdörtgenler içinde gösterilir. Gizil değişkenler arasında tek yönlü ve çift yönlü oklarla gösterilmiş parametrelerin yanı sıra, gizil değişkenlerden onların göstergelerine uzanan tek yönlü oklarla gösterilen parametrelerin de hesaplanması gerekir. Bunlar faktör analizindeki faktör ağırlıklarına karşılık gelen değerlerdir. YEM terminolojisinde göstergeler gizil değişkenleri yordamaz, aksine her bir gizil değişken kendi göstergelerini yordar. Göstergelere dışarıdan uzanan tek yönlü oklar ise bunların hata varyansinı betimlemektedir. Hata varyansı doğal olarak bir gọ̈stergenin açıklamadığı varyansı gösterir. Yani bir gösterge ağrrlığının karesinin alınıp bunun " 1 "den çıkarılması, o göstergenin hata varyansına karşılık gelir.


Şekil 2. Model Betimleme, Şekilsel Gösterim ve Sembolleme

Modelde gizil değişkenlere yukarıdan (boşluktan) uzanan tek yönlü oklar ise, o gizil değişkenlerdeki ondan önce gelen bağımsız gizil değişkenler tarafindan yordanamayan hata varyansına karşılık gelir. Böylece Şekil 2'deki modelde yer alan bütün değişkenler ve bu değişkenlerin hata değerleri, aralarındaki ilişkiler, sabit ve serbest parametreler betimlenmiş olmaktadır. Bu model gerçekte doğrudan ölçülen sekiz değişken (göstergeler) arasındaki doğrusal ilişkinin örüntüsüne dayalı olarak sınanan bir modeldir (YEM'in betimlenmesinde bağımsız göstergeler " $X$ ", bağıml göstergeler ise " $Y$ " ile gösterilir, Şekil 2'deki Yunanca işaretlerin ne anlama geldiği aşağıda anlatılmaktadır). YEM'in avantajı, bu örüntüyü öngörülen dört gizil değişken temelinde betimleyebilmesi ve her bir parametreye ilişkin rakamsal değerleri hesaplayabilmesidir.

Geleneksel YEM yaklaşımında yukarıda anlatılan gizil değişkenlerden ölçüm modellerine ve ölçüm hatalarına kadar bir modelde bulunan bütün parametreler istatistikte yaygın olarak Yunanca sembollerle gösterilirler. Bu gösterim genellikle istatistik korkusu olan kişilerin kafasını biraz karıştırsa da YEM analizi yapan birçok program hala bu dil temelinde tanımlama yapmakta ve çıktı vermektedir. Ancak yeni çıkan programlarda bu semboller daha basit tanımlamalarla ve Ingilizce kısaltma yazılımı ile de gösterilmektedir.

Eksiksiz bir YEM analizi sekiz temel matristen oluşur ve her bir matristeki parametreler bu sembollerle gösterilir. Şekil 2'deki Yunanca semboller bunları göstermektedir. Aşağıda bunların standart Ingilizce kısaltmaları da verilmektedir. Sırasıyla, Şekil 2'de görüldüğgu gibi, bağımsız ve bağımlı gizil değişkenlere ilişkin parametreler farklı matrisleri temsil ederler ve
farkıı sembollerle gösterilirler. Bağımsız gizil değişkenler "ksi" $(\xi)$ ya da " $K$ " ile gösterilirken, bağımlı gizil değişkenler "eta" $(\eta)$ ya da "E" ile gösterilir. Yukarda anlatıldığı gibi gizil değişkenler arasında regresyon (tek uçlu okla gösterilen) ya da korelasyon ilişkisi (çift uçlu okla gösterilen) olabilir. Bağımsız gizil değişkenlerin bağımlı gizil değişkenler üzerindeki yordayıcı regresyon ilişkisini gösteren parametreler "gamma" ( $\gamma$ ) ile; bağımlı bir gizil değişkenin diğer bir bağımlı gizil değişken üzerindeki regresyonu ise "beta" ( $\beta$ ) ile gösterilir. YEM'de bağımsız gizil değişkenler arsındaki korelasyon ise "phi" ( $\phi$ ) ile gösterilir ve bağımsız gizil değişkenler arasındaki kovaryansa karşllık gelir. Bağımlı gizil değişkenlerdeki yapısal hatalar, diğer bir deyişle açıklanamayan varyanslar "zeta" $(\zeta)$ ile gösterilir.

YEM'de bağımsız gizil değişkenlerin göstergeleri (gerçekte ölçülen değişkenler) her zaman " $X$ " ile bağımlı gizil değişkenlerin göstergeleri ise " $Y$ " ile gösterilir. Ölçüm modelinde yer alan ve gizil değişkenleri kendilerinin göstergelerine bağlanan "faktör ağırlıkları" "lamda" ( $\lambda$ ) ya da "LX ve LY" işaretleri ile gösterilir. YEM hiçbir gösterge değişkenin mükemmel olarak ölçülemeyeceğini kabul eder ve göstergelerin hata varyansların da hesaplamalara dahil eder. Bağımsız gizil değişkenlerin göstergelerindeki hata katsayıları (oranları) "delta" ( $\delta$ ) ya da "TD" matris olarak gösterilirken, bağım11 gizil değişkenlerin göstergelerindeki hata katsayılanı "epsilon" ( $\varepsilon$ ) ya da "TE" matris olarak gösterilir.

Yukarda özetlenen değerler özellikle LISREL ile yapılan YEM analizlerinde kullanılan sekiz farklı matrise karşılık gelir. Neyse ki LISREL'in son sürümlerinde bu matrisler iki harfli Ingilizce sembollerle yazılmış ve kafa karıştıran

Yunanca semboller ve tanımlamalar bir ölçüde basitleştirilmiştir. Özetle, son yaklaşıma göre YEM'de kullanılan matris isimleri ve tanımları şu şekildedir:

1. BE (Beta): Gizil bağımlı değişkenler arasındaki yordayıcı regresyon katsayıları matrisi.
2. GA (Gama): Gizil bağımsız değişkenlerin yordadığı bağımlı değişkenlerin regresyon katsayıları matrisi.
3. LX (Lamda $x$ ): Gizil bağımsız değişkenlerin yordadığı ölçülen bağımsız değişkenlere (göstergelere) ilişkin katsayıların matrisi.
4. LY (Lamda y): Gizil bağımlı değişkenlerin yordadığı ölçülen bağımlı değişkenlere (göstergelere) ilişkin katsayıların matrisi.
5. PI (Phi): Gizil bağımsız değişkenler arasındaki kovaryans matrisi.
6. PS (Psi): Bağımlı gizil değişkenlere ilişkin hataların kovaryans matrisi.
7. TD (Teta-Delta): Gizil bağımsız değişkenlerin yordadığı ölçülen bağımsız değişkenlerin (göstergelerin) hatalarına ilişkin kovaryans matrisi.
8. TE (Teta-Epsilon): Gizil bağımlı değişkenlerin yordadığı ölçülen bağımlı değişkenlerin (göstergelerin) hatalarına ilişkin kovaryans matrisi.

DFA'da betimleme süreci de yukarda anlatılan sürece paralel olarak yapılır. Ancak DFA'nın çok maddeli psikolojik ölçeklerin güvenirlik ve geçerlik bilgilerini elde etmek amacıyla kullanıldığı durumlarda, her bir madde bir gösterge değişken görevi yapar ve betimleme temelde hangi maddenin hangi alt ölçek altında gösterileceğinin betimlenmesidir. DFA ölçek geliştirme ya da sınama amacıyla kullanıldığın-
da faktörleri temsil eden gizil değişkenler arasında sadece yönü bilinmeyen ilişkiler (korelasyonlar) olduğu varsayılır ve genellikle bütün parametreler serbest birakilır .

## Model Tanımlanması (Model Identification)

Bir modeldeki bütün parametrelerin betimlenmesinin ardından istenilen kovaryans matrisinin hesaplanması, modelin sınanması ancak önerilen modelin tanımlanması ile mümkündür. Modeldeki her bir parametre için tek bir sayısal çözüm varsa ya da sayısal bir değer verilebiliyorsa, model tanımlanmış olarak kabul edilir. Model tanımlamada ilk aşama veri matrisindeki bütün sayısal değerleri ve ölçülecek parametre sảyısını tespit etmektir. YEM'de sayısal değerler bir örneklemde hesaplanabilir toplam varyans ve kovaryans sayısına eşittir. Bir model "tam tanımlanmış" (just-identified), "fazla tanımlanmış" (over-identified) ya da yetersiz tanımlanmış (under-identified) olabilir. Tam tanımlanmış bir modelde hesaplanan eşitlik sayıs1 modeldeki olası bütün parametrelerin sayıs1na eşittir. Örneğin bütün olası doğrudan ve dolaylı ilişkilerin yordandığı tek yönlü nedensel (recursive) modeller tam tanımlanmış modellerdir ve bu modellerde ölçülmemiş hiçbir parametre yoktur. Şekil'2 de sunulan model tam tanımlanmış bir modeldir. Tam tanımlanmış modellerde bütün parametreler hesaplandığı için bu parametreler genellikle örneklemin kovaryans matrisini mükemmel olarak yansitur. Ancak, bu tür modellerle denence sınanması mümkün olmadığından, elde edilen sonuçlar araştırmacılar için çok fazla değer taşımaz.

Fazla tanımlanmış model, parametre hesaplanması için gerekli olandan daha fazla eşitlik kullanılan modeldir. Diğer bir deyişle, fazla tanımlanmış modeller araştırmacıların bazı para-
metrelere sınırlılıklar koydukları modellerdir. Sınırlama araştırmacının nedensel modelde öne sürdüğü denencesine karşılık gelir ve bu denenceyi sınamak için bazı parametreleri (örneğin iki gizil değişken arasındaki ilişkiyi) sıfıra ya da önceden belirlenen bir değere eşitleyebilir veya bazı parametreleri hiç eşitliğe katmayabilir. YEM en çok, fazla tanımlanmış modellerin s1nandığı analizlerde kullanılır. Yetersiz tanımlanmış modeller ise parametre hesaplanması için yeterli bilgiye, veriye sahip olmayan modellerdir. Bu modellerde hesaplanacak parametre sayısı veriden elde edilebilecek eşitlik sayısından fazla olduğu için modeli sınamak ve bir çözüm elde etmek mümkün değildir.

Üç farklı model tanımlaması arasındaki farklılıklardan da anlaşılacağı gibi, model tanımlamada en önemli iki unsur, veri değerleri ve hesaplanacak parametre sayılarıdır. Hesaplanacak parametre sayısındaki farklılık ne tür bir modelin tanımlandığını da gösterir. YEM'de kullanılan veri değerleri, gerçekte, bir örneklemde bulunan bütün varyans ve kovaryanslara karşlık gelir (Bkz. Tabachnick ve Fidell, 2000). Bu say1 " $p(p+1) / 2$ " ( $p=$ gözlenen değişken-gös-terge- sayısı) formülü ile basitçe hesaplanabilir. Örneğin, Şekil 2'de 8 gösterge değişken bulunduğundan, toplam $36(8(8+1) / 2)$ veri değeri bulunmaktadır ( 8 varyans, 28 kovaryans). Parametre sayısı ise bir modelde kaç adet bağlantının (path) hesaplanacağına karşılık gelir. Örneğin, Şekil 2'de sunulan tam tanımlanmış modelde hesaplanacak toplam parametre sayısı $22^{\prime}$ dir (8 varyans ve 14 bağlantı ya da regresyon katsayısı). Hesaplanacak olan parametre sayısını bulmanın bir başka pratik yolu da, modelde gösterilen ve hesaplanan varyans ve kovaryanslara karşılık gelen bütün tek uçlu ve çift uçlu okları saymaktır. Şekil 2'deki oklar sayıldığın-
da bunun da 22 'ye eşit olduğu görülecektir. Bu durumda, özetle, bir modelde kaç adet varyans, kovaryans ve bağlantının hesaplanacağının belirlenmesi model tanımlanması olarak ifade edilebilir.

Model tanımlama, aynı zamanda, aşağıda anlatılacak olan model anlamlilik testinde ( $\chi^{2}$ ) kullanılacak olan serbestlik derecesinin hesaplanmasını da kapsar. YEM'in sınanmasında kullanılan serbestlik derecesi, bir modelde hesaplanması öngörülen (tanımlanan) parametre sayısının, modeldeki bütün varyans ve kovaryansların toplamından çıkarılmasından elde edilir. Örneğin, Şekil 2'deki model için bu değer 14 'tür ve 36 varyans ve kovaryanstan 22 adet hesap edilmesi gereken parametrenin çıkarılmasıyla kolayca hesaplanabilir.

Bazı araştırmacılara göre ölçüm ve yapısal modellerin tanımlanabilmesi için belirli koşulları taşıması gerekir. Örneğin Kenny'ye (1998) göre ölçüm modelinin tanımlanmasında öncelikli kuralların başında her bir gizil değişkenin yeterli sayıda gösterge değişkenle (en az üç) ölçülmesi, en az iki göstergenin hatalarının birbirinden bağımsız olması ve gizil değişken göstergelerinden en az birinin bir başka gizil değişken göstergesi ile hiçbir ortak hata kovaryansı olmaması gelir. Yapısal modelde ise tanımlamanın minimum kuralı bir modeldeki bilinen değerlerin sayısı serbest parametrelerin sayısına en azından eşit olmalı ya da ondan fazla olmalıdır. Tanımlama minimum kurallara uygun olmadığı durumlarda özellikle LISREL programları sıklıkla hata verir ve işlemi tamamlamadan bitirir. Bu nedenle araştırmacıların analiz sırasında tanımlama hatalarına karşı çok dikkatli olmaları gerekir.

## Modelin Istatistiksel Uygunluğu

Modelin betimlenmesi ve tanımlanmasını takiben eldeki veri üzerinden model parametreleri hesaplanır. Bu hesaplama işleminde faktör analizlerine benzer şekilde iteratif yöntemler uygulanır ve çözümde kullanılan temel çıkarım tekniği maksimum olasılıktır. Ancak amaca göre en küçük kareler çıkarım tekniği de seçilebilir. Hangi yöntem seçilirse seçilsin, bakılan tek uyum ölçütü önerilen modelle eldeki verinin ne oranda uyuştuğu ya da biniştiğidir. Daha işevuruk bir tanımla uyuşma, ölçülen değişkenler arasında gözlenen kovaryans matrisi ile model tanımlamayla vardanan kovaryans matrisinin ne oranda benzeştiğine karşlık gelir. Burada vardanan (implied) kovaryans matrisi, tanımlama sonucunda sabitlenen ve serbest birakılan parametrelerin yapısal eşitliğe sokularak model kovaryans matrisinin oluşturulması anlamına gelmektedir. Faktör analizinde olduğu gibi her bir iterasyonda gözlenen ve vardanan matris arasındaki fark hesap edilir. Bu farklardan oluşan matrise de kalan (residual) kovaryans matrisi adı verilir. Kalan kovaryans matrisi maksimum düzeyde küçülünceye kadar iterasyon devam eder ve artık küçülmenin mümkün olmadığı noktada çözüm elde edilir. Bu çözüm sonucunda elde edilen değer iki matrisin (gözlenen ve vardanan) ne oranda uyuştuğunu gösterir. Şayet tam bir uyuşma, binişme söz konusu ise bu değerin " 0 " olması gerekir ve bu da mükemmel bir uyuma işaret eder.

YEM'de uyumun değerlendirilmesi kullanılan paket programına göre değişebilir. Ancak, en yaygın kullanılan ve bir anlamda başlangı̧̧ uyum değeri diyebileceğimiz istatistik Ki Kare testidir. YEM sınanmasında kullanılan farklı istatistik programları farklı sayıda ve türde uyum istatistiği vermektedir. Örneğin LISREL mode-
lin veriye uyumunun farklı yönlerini farklı ölçütlẹ temelinde değerlendiren 15 farklı uyum istatistiği vermektedir. Bunlar üç grupta toplanabilir: Ki Kare ( $\chi^{2}$ ) Uyum testi (Chi-Square Goodness of Fit), Iyilik Uyum Indeksleri (Goodness of Fit), ve Karşılaştırmalı Uyum Indeksleri (Comparative Fit Indices).

Çoğu paket program başlangıçta en genel uyum istatistiği olan $\chi^{2}$ Uyumu anlamlılık testini verir. Bu test en basit anlamıyla bahsedilen iki kovaryans arasındaki uyum değerinin kullanılan örneklemdeki denek sayısı eksi 1 ile çarpılmasından elde edilir. Elde edilen sonuç $\chi^{2}$ dağılımı olarak hesaplanır. Bu hesaplamada verinin çok değişkenli istatistiklerin genel sayıltıSı olan "çok değişkenli normallik" sayıltısına uygun olduğu varsayılır ve bu nedenle kullanılmasında başta örneklem genişliği olmak üzere bazı kritik noktalara dikkat edilmelidir (Chou ve Bentler, 1995). Eğer veri ile model arasında uyum mükemmel ise elde edilen değerin " 0 "a yakın olması ve anlamlılık değerinin ( $p$ değeri) manidar (anlaml) olmaması gerekir. Dolayısiyla geleneksel anlamlilik testinin tersine $\chi^{2}$ testinde anlamsız bir " p " değeri elde edilmek istenir. Bu nedenle, elde edilen büyük $\chi^{2}$ değerleri elde edilen uyumun ne kadar "kötü" olduğunu gösterir ve $\chi^{2}$ testine bir anlamda "kötülük uyumu testi de" (badness-of-fit) denilebilir (Hoyle, 1995). $\chi^{2}$ testi örneklem yeterince genişse ve veri çok değişkenli istatistiğin temel sayıltılarını tam olarak karşılıyorsa doğru bir ölçüm verir. Serbestlik Derecesi de (SD) $\chi^{2}$ testinde önemli bir ölçüttür. SD'nin büyük olduğu durumlarda da $\chi^{2}$ anlamlı sonuçlar verme eğilimindedir. Bu nedenle bazı durumlarda SD'nin $\chi^{2}$ e oranı da yeterlik için bir ölçüt olarak kullanılabilir. $1 / 3$ ve daha düşük oranlar iyi uyum; $1 / 5$ 'e kadar olan oranlarda yeterli (ehveni şer!) uyum olarak
kabul edilir (Marsh ve Hocevar, 1988). Örneğin, $\chi^{2}=200, \mathrm{SD}=90$ olan bir analizde $\chi^{2}$ istatistiksel olarak anlamlı olsa bile uyum yeterli kabul edilebilir. Ki Kare aynı veri üzerinde iki modelin karşılaştrıılması amacıyla da kullanılır. Ki Kare Fark Istatistiği olarak kullanılan bu yöntemde aynı veri setinden aynı sayıda gösterge ve gizil değişkenlerden oluşan, diğer bir deyişle birbirlerinden üretilebilen (nested) modeller karşılaştırılabilir. Bu işlemde karşılaştırılan modellerin $\chi^{2}$ ve SD değerleri birbirinden çıkartılır ve SD farklarına karşlık gelen değer Ki Kare Tablosunda kullanılması gereken SD değeri olarak kabul edilerek modeller değerlendirilir. Örneğin iki modelin SD'leri arasındaki fark $5, \chi^{2}$ değerleri arasındaki fark da 8 olsun, herhangi bir istatistik kitabının arkasındaki Ki Kare Tablosuna baktığımızda " p " değerini .05 olarak kabul edersek, $\mathrm{SD}=5$ olduğu durumda .05 için kritik değer 11.07 , bizim elde ettiğimiz iki model arasındaki $\chi^{2}$ farkı (8) bu değerden küçük olduğu için karşılaştrrılan iki modelin veriye uygunluğu bakımından istatistiksel olarak anlamlı bir farklılığının olmadığını söyleyebiliriz.

Ki Kare testinin olası sınırllıkları ve modelin uyuma ilişkin yanlılıkları dikkate alınarak, ikinci grup testler olarak adlandırılan çok sayıda uyum ve anlamlılık testi geliştirilmiştir. Bu testler özellikle geniş örneklem kullanıldığı durumlarda önerilmektedir (Hu ve Bentler, 1995). Bunlara genel olarak tyilik Uyum Indeksi (Goodness of Fit Index; GFI) ismi verilmiştir. Başta GFI olmak üzere, uyum indeksleri uluslararası literatürde Ingilizce kısaltmaları ile verildiği için bu bölümde bu indeksler Türkçe yerine Ingilizce kısaltmaları kullanılarak verilmektedir. Bu alandaki son çalışmalar dikkate alnnarak araştırmacılar uyum indekslerini amaçlarına gö-
re üç grupta toplamışlardır (ayrıntılı bilgi için bakınız Anderson \& Gerbing, 1988; Hoyle \& Panter, 1995; Hu \& Bentler, 1995; Hoyle, 1995; Jöreskog ve Sörbom, 1993; Tabachnick ve Fidell, 2000). Hu ve Bentler (1995) uyum indekslerini, mutlak ve artmalı (incremental) olmak üzere iki genel kategoride toplamaktadır. Mutlak uyum indekslerinin başında LISREL kullananlar için Jöreskog ve Sörbom'un (1993) geliştirdiği GFI ve AGFI (Adjusted Goodness-ofFit Index) gelir.

GFI temelde uygunluğun örneklem genişliğinden bağımsız olarak değerlendirilebilmesi için geliştririlmiştir. GFI modelin örneklemdeki varyans-kovaryans matrisini ne oranda ölçtüğünü gösterir ve modelin açıkladığı örneklem varyansı olarak da kabul edilir. Bu nedenle regresyondaki $R^{2}$ ye benzer. GFI değerleri 0 ile 1 arasında değişir ve örneklem genişliğine çok duyarlı olduğu için büyük N' lerde daha küçük değerler verir. .90 ve üzeri iyi uyum olarak kabul edilir. AGFI ise örneklem genişliği dikkate alınarak düzeltilmiş olan bir GFI değeridir. N'in özellikle büyük olduğu durumlarda AGFI daha temsili bir uyum indeksidir. AGFI, SD ve GFI değerleri bilindiğinde kolayca hesaplanabilir. Bunun için aşağıdaki formül kullanılabilir:

$$
\mathrm{k}(\mathrm{k}+1)
$$

$$
\mathrm{AGFI}=1-\longrightarrow(1-\mathrm{GFI})
$$

## 2sd

$\mathrm{k}=$ ölçülen (gösterge) değişken sayısı, SD $=$ Serbestlik derecesi

AGFI değerleri de doğal olarak 0 ve 1 arasında değişir ve .95 ve üzeri mükemmel uyum, .90 üzeri de tatminkar düzeyde uyum olarak kabul edilir.

GFI ve AGFI dı̧̧ında, örneklemde gözlenen
değişkenler arasındaki kovaryansla modelde önerilen parametreler arasındaki kovaryans matrisi arasındaki farkın, diğer bir deyişle hatanın derecesi temelinde geliştirilmiş olan mutlak uyum indeksleri de kullanılmaktadır. Bunların başında Ortalama Hataların Karekökü (Root Mean Square Residuals, RMS Residiuals) ve Yaklaşık Hataların Ortalama Karekökü (Root Mean Square Error of Approximation, RMSEA) indeksleri gelir. Her iki değerin de GIF ve AGFI'nin tersine " 0 " yakın değerler vermesi (gözlenen ve üretilen matrisler arasında minimum hata olması) istenir. . 05 'e eşit ya da daha küçük olan değerler mükemmel bir uyuma tekabül eder. .08 ve altındaki değerler de model karmaşıklığı dikkate alınarak kabul edilir değerler olarak görülebilir. RMSEA temelinde yapılan değerlendirmede serbestlik derecesi de dikkate alınır ve son araştırmalarda daha çok bunun kullanıldığı dikkat çekmektedir.

Artmalı uyum indeksleri ise modelin uyumunu ya da yeterliğini genellikle, bağımsızlık modeli ya da yokluk modeli (null) olarak adlandırılan ve değişkenler arasında hiçbir ilişkinin olmadığını varsayan temel bir modelle karşılaştrarak verir. Önerilen modelin yokluk modelinden çok iyi olması gerekir. Dolayısıyla bağımsızlık modelinin görece çok yüksek (anlamlı) bir $\chi^{2}$ değeri vermesi, önerilen modelin de görece çok düşük (anlamsız) bir $\chi^{2}$ değeri vermesi beklenir. Artmalı uyum indekslerinin başında Karşılaştırmalı Uyum Indeksi (Comparative Fit Index, CFI) gelir. CFI, bağımsızlık modelinin (gizil değişkenler arasında ilişkinin olmadığını öngören model) ürettiği kovaryans matrisi ile önerilen YEM modelinin ürettiği kovaryans matrisini karşlaştırır ve ikisi arasındaki oranı yansitan " 0 " ile " 1 " arasında bir değer verir. Değerler " 1 "e yaklaştıkça modelin daha iyi bir
uyum verdiği kabul edilir. 90 ve üzerindeki değerler iyi uyum olarak değerlendirilir.

Aynı anlayışa dayanarak Bentler tarafından Normlaştırılmış Uyum Indeksi (Normed Fit Index, NFI) ve Normlaştırılmamış Uyum Indeksi (Non-normed Fit Index, NNFI) geliştirilmiştir. CFI'a alternatif olarak geliştirilen NFI, karşılaştırdığı modeller bakımından özünde CFI benzer, ancak Ki Kare dağılımının gerektirdiği sayıltılara uyma zorunluluğu olmaksızın karşılaştırma yapar. NNFI (Tucker-Lewis Indeks, TLI olarak da isimlendirilmiştir) ise NFI'ya benzer ancak model karmaşıklığını dikkate alarak bir değer verir. Bunu da karşılaştırdığı modellerin (bağımsızlık ve önerilen modeller) SD'lerini hesaba katarak yapar. Yine CFI'e benzer şekilde NFI ve NNFI değerlerinin " 0 " ile " 1 " arasında değişir ve .95 ve üzeri mükemmel uyuma , .90 ve .94 arası değerler de kabul edilir uyuma karşılık gelirler.

Yukarıda anlatılanların dışında genellikle raporlarda yer almayan ancak dikkate alınmasında çok yarar olan başka indeksler de vardır. Bunların başında Basitlik (Yalınlık) Uyum Indeksi (Parsimony Goodness of Fit Index, PGIF) gelir. PGIF bir anlamda GFI' yi önerilen ve bağımsızlık modellerinin oranını dikkate alarak yeniden yorumlar ve modelin ne ölçüde yalın bir model olduğu konusunda fikir verir. Burada da değerler 1'e yaklaştıkça modelin yalın ve sade olduğu konusunda bir uygunluk değeri verir.

Iyi bir YEM analizinde Ki Kare değerine ek olarak mutlak ve artmalı uyum indeksleri grubundan indekslerin verilmesi önerilmektedir (Hoyle ve Panter, 1995). YEM analizinde kullanılan paket programlar farklı sayıda uyum indeksleri vermekte; bazen de aynı indeks farklı bir isimle verilmektedir. LISREL kullanan araş-
trrmacılar, yayınlarında genellikle, Ki Kare değeri yanında sıklıkla GFI, AGFI, RMSEA, CFI ve NNFI değerlerini de rapor etmektedirler.

YEM analizlerinde uyum indeksleri yanında en çok incelenen bir başka değerler grubunu da Modifikasyon Indeksleri (MI) oluşturur (bu EQS programında "Lagrange Multiplier Test" olarak isimlendirilmiştir) . MI, gösterge ve gizil değişkenler arasındaki kóvaryansa bakarak araştırmacıya modele ilişkin ayrıntılı olarak modifikasyonlar önerir. Bu modifikasyonlar genellikle hata matrisleri temelinde oluşturulur ve modelde orijinal olarak öngörülmeyen, ancak eklenmesi ya da çıkarılması durumunda modelde kazanılacak Ki Kare miktarını gösterir. Modifikasyonlar göstergeler ya da gizil değişkenler arasında önerilen yeni bağlantılardan, bu değişkenler arasinda eklenmesi önerilen hata kovaryanslarına kadar bir çok parametreyi kapsar. MI'nın kullanılmasında çok dikkatli olunmalıdır. MI'nın tek başına modeli daha da geliştirmek ya da uyum indekslerini artırmak için bir rehber olarak kullanıldığı durumlar YEM'in temel amaçlarına aykırıdır. MI temelinde yapılacak her tür modifikasyon ya da revizyon mutlaka kuramsal bir gerekçeye dayanmalıdır; aksi halde model sınamanın bir anlamı kalmaz. Özellikle, MI tarafından önerilen bir değişiklik modelin $\chi^{2}$ değerinde çok büyük bir düşmeye karşlık geliyorsa bu önerilen modifikasyonun model açısından çok kritik bir değişiklik olduğunu gösterir. MI'nın amacı dışında kullanımı konusuna aşağıda yeniden değinilmektedir.

YEM temelinde yapılan analizler genelde bilimsel analizlerde kullandığımız belirlemeci, positivist felsefe mantığı kapsamında ele alınmalıdır. Modelde öne sürülen nedensellik gerçekte bir mantık kapsamında ele alınan nedenselliktir. Mulaik ve James (1995) bu kapsamda
yanlışlanabilirlik ve nesnelliğin YEM analizlerinde en temel iki ilke olduğunu vurgulamakta ve model değerlendirme sürecinin bu ilkeler çerçevesinde sistematik bir strateji izlenerek yapılmasın önermektedir. Bu nedenle modelin veriye uygunluğunu farklı ölçütler kullanarak değerlendiren uyum indeksleri modelin ne kadar iyi olduğunu değil, elde edilen sonucun alternatif açıklamalara oranla ne kadar güçlü savunulabileceğinin gösterilmesi için kullanılmalidır. James ve arkadaşları (1982, aktaran Mulaik ve James, 1995) ve Jöreskog ve Sörbom (1993) model sınama sürecinde, uyumun ya da uyum eksikliğinin kaynağını araştırmacılara açık bir şekilde gösterebilmek için analizin aşağıdaki aşamalar izlenerek yapılmasını önermektedir:

1. Ölçïm Modeli: Bu model gizil değişkenlerin genel faktörler olarak kabul edildiği bir DFA işlemidir. Gizil değişkenler arasında herhangi bir yön dikkate alınmaz. Ölçüm modelinin temel amacı, göstergelerin gizil değişkenleri ne oranda temsil ettiğinin saptanması ve gizil değişkenler arasındaki korelasyonların belirlenmesidir. Eğer ölçüm modelinin uyum istatistikleri tatminkar değilse, gerekli değişiklikleri yapmadan YEM analizine geçmenin bir anlamı yoktur. Ölçüm modeli yeterli uyum vermediğinde araştırmacıların başvurabileceği birkaç seçenek vardır. Bunların başında MI'i ayrıntılı olarak inceleyerek sabitlenmesi ya da serbest bırakılması önerilen parametreleri (özellikle göstergelerin hataları arasındaki korelasyonları) saptamak ve gerekli revizyonları yapmak gelir. Ancak, bu noktada çok dikkatli davranılmalıdır. MI'nın önerdiği bütün parametre revizyonlarının yapılması YEM mantığı bakımından kabul edilemez ve temel varsayımlardan sapılması anlamına gelir. Yapılan her revizyonun ya da de-
ğişikliğin gerekçeleri mutlaka açıkça belirtilmelidir ve bu gerekçeler mutlaka kuramsal ya da kabul edilebilir bir kavramsal mantığa dayandırılmalıdır. Bunun dışında yeni bir gizil değişkenin gerekli olup olmadığı konusunda bir fikir elde etmek için göstergeler üzerinde temel bileşenler ya da faktör analizi yapılabilir. Gerekiyorsa modele yeni bir gizil değişken eklenebilir ve uyum indeksleri yeniden gözden geçirilir. Yeni modelin daha iyi uyum sağlaması durumunda önerilen modelin gözden geçirilmesi ve yeni gizil değişkenlerle yeniden formüle edilmesi yararlı olabilir. James ve arkadaşlarının önerdiği üçüncü strateji ise, ölçüm modelinin uyumu yeterli olmadığ1 durumda araştırmaclların yeni göstergeleri ölçmesi, yeni bir veri toplaması ve DFA'yı model uyum indeksleri yeterli oluncaya kadar sürdürmeleridir. Jöreskog ve Sörbom (1993) ölçüm modelinde temel amacın göstergelerin gizil değişkenleri ölçmek için ne kadar yeterli birer ölçüm araçları olduklarının belirlenmesi olduğunu belirmektedirler. Bu yazarlara göre ölçüm modelinde kritik kavramlar, ölçüm, güvenirlik ve geçerliktir.
2. Yapısal Eşitlik Modeli: Yukarıda anlatıldığı gibi YEM araştırmacının gerçekte sınamak istediği modeldir. YEM'in ölçüm modelinden en önemli farklılığı gizil değişkenler arasındaki ilişkilerin örüntüsünün ve yönünün tanımlanmış olmasidır. YEM yeterli düzeyde uyum vermedi-: ği durumda gizil değişkenler arasında önceden sabitlenen bazı bağlantıların serbest bırakılması önerilebilir. Ancak, serbest bırakılan her bir parametrede bir SD'nin kaybedildiği unutulmamalıdır. Yine bu aşamada yapılacak modifikasyon ya da revizyonun önerilen temel modele uygun olması gerekir.
3. Hişkisiz Faktörler Modeli: Bu da ölçüm modeline benzer şekilde yapılan bir DFA işle-
midir. Ancak, gizil değişkenler arasındaki bütün olası ilişkiler sabitlenerek, gizil değişkenlerin ilişkisiz olduğu bir model sınanır ve doğal olarak araştırmacı bunun kötü uyum indeksleri vermesini bekler. Alınan kötü uyum sonuçları en azından bazı gizil değişkenler arasında ilişkilerin bulunduğunu gösterir. †lişkisiz faktörler modeli kabul edilir düzeyde uyum indeksleri ile sonuçlanmışsa, gerçekten gizil değişkenler arasında sınanacak pek bir ilişki yok demektir ve araştırmacının önerilen modelini sınamasının da bir anlamı yoktur.

## 4. Yokluk Modeli ya da Hlişkisiz Değişken-

 ler Modeli: Yukarida uyum indekslerini anlatırken bahsedilen bağımsızlık modeline karşlık gelen yokluk modeli, temelde karşılaştırmalı ve artmalı uyum istatistikleri için bir referans değeri elde etmek amacıyla hesaplanır. Bu "en kötü" uyum referansı olarak da görülebilir. Bu modelde değişkenler (göstergeler) arasında hiçbir ilişkinin olmadığı varsayılır. Değişkenler arasında ilişkinin olmadığını varsayan yokluk modeli ile bütün olası parametrelerin tanımlandığı tam tanımlanmış model iki zıt kutbu oluşturur. LISREL de dahil olmak üzere çoğu YEM programı yokluk modeli (denencesi) için $\chi^{2}$ değerini her analizde otomatik olarak vermektedir.Bu aşamaların dışında iyi bir YEM analizinde, Harman Tek Faktör modeli olarak bilinen ve bütün göstergelerin tek bir faktöre yüklendiği bir modelin de sınanması önerilmektedir (Loehlin; 1992, Jöreskog, 1993). Bu model değişkenler arasındaki kovaryansın tek bir faktörle açıklanabileceğini varsayar ve özellikle aynı yöntemle bütün verilerin toplanmasından kaynaklanan "yöntem varyansının" etkisini test etmek için çok gereklidir. Bu model psikologların en sık kullandığı yöntem olan anketleme ya da ka-
ğıt kalem testleriyle bütün değişkenlerin ölçüldüğü durumlarda, veri matrisinde katılımcıların aynı yönteme istenilir cevap verme eğiliminden kaynaklanan abartıl korelasyonların olup olmadığını anlamak için gereklidir. Tek faktör modelinin de çok kötü bir uyum vermesi istenir ve bu modelin uyum değerleri ne kadar kötü ise "aynı yöntem varyansının" değişkenler arasındaki örüntüyü açıklama olasilığ1 da o oranda azalıyor demektir.

Yukarıda anlatılan aşamaların en yaygın görülen uygulamaları sistematik olarak ölçüm modeli ve yapısal modelleri mantıksal bir analiz s1rasında yapılması şeklinde gözlenmektedir. Çoğu araştırmacının önerdiği pratik aşamalar aşağıda özetlenmiştir. Bu aşamaların dikkate alınarak modelin sınanması YEM altında yatan bilim felsefesi ve nesnellik ilkesinin de bir gereğidir (Nedensel modellemenin altinda yatan ilkelerin ayrıntılı tartışmaları için bakınız, Biddle ve Marlin, 1987; Mulaik, 1987; Mulaik ve James, 1995).

Bir çok YEM araştırmacısına göre (Örn., Hoyle, 1995; Jöreskog ve Sörbom, 1993) ölçüm modelini sınarken izlenmesi gereken aşamalar aşağıda sıralanmaktadır:

1. Her bir gizil değişken ve onun göstergeleri için ayrı bir ölçüm modeli test edilir.
2. Gizil değişkenler ikili gruplar halinde test edilir.
3. Bu kombinasyonlara yeni gizil değişkenler eklenerek test edilir ve bu işleme modeldeki bütün gizil değişkenler tamamlanıncaya kadar devam edilir. Her bir aşamada, gerekiyorsa bir revizyon yapılır ve bunun gerekçesi ayrıntılı olarak açıklanır. Örneğin, aynı değişkenin öntest ve sontest puanları (örneğin, tedaviden önce ve sonra depresyon düzeyleri) farklı gizil de-
ğişkenlerin göstergesi olarak modelde tanımlanmışsa ve MI bu iki ölçüm arasında bir hata korelasyonu öneriyorsa, bu modele eklenebilir. Burada hem kuramsal hem de pratik gerekçe kolaylıkla açıklanabilir.
4. Göstergelerin ağırlıkları ve gizil değişkenler arasındaki korelasyonların büyüklüğü ve yönü incelenir. Yeterince ölçülemeyen (düşük gösterge ağırlıklarına sahip olan) gizil değişkenler hakkında karar verilir. Gerekirse yeniden tanımlama yapılır.
5. Bütün model, kovaryans matrisinde hiç bir sınırlama yapmadan, tam ölçüm modeli olarak test edilir.
6. Bütün gizil değişkenlerin yer aldığı önerilen yapısal model test edilir.
7. Her bir aşamada modelin uyum indeksleri, özellikle başta $\chi^{2}$ olmak üzere temel mutlak ve artmalı uyum indeksleri, $\chi^{2}$ in SD' ye orann, anlamlılık için $t$ değerleri, standart hata değerleri ve modelde modifikasyon yapılmışsa, bu değerlerin modifikasyondan önceki ve sonraki halleri ayrıntılı olarak incelenir.
8. Önerilen model çok iyi bir uyum sağlamış olsa bile bunun en iyi model olduğu anlamına gelmez. tyi bir YEM analizinde kuramsal olarak "makul" olan alternatif modeller de üretilmeli ve sınanmalıdır (Loehlin, 1992). Araştırmacının öne sürdüğü modelin bütün makul alternatiflerden daha iyi uyum değerlerine sahip olması koşulunda, veriyi en iyi açıklayan model olduğu kabul edilebilir.

## Yapısal Eşitlik Modeli Stratejileri

Yukarıda anlatılan aşamalar YEM'de hangi stratejinin kullanıldığına bağlı olarak da değişebilir. Bu yazının başlangıç bölümlerinde anlatıldığı gibi, YEM bir kuram, yaklaşım ya da en
azından bir denence kapsamında öne sürülen model ya da modellerin sınanmasına dayanır. Ancak, araştırmacının amacına göre YEM uygulamada bir model oluşturma ya da geliştirme stratejisi olarak da kullanılabilir. Bu doğrultuda Jöreskog ve Sörbom (1993) üç farklı strateji tanımlamaktadır: Mutlak doğrulayıcı, model üretme (ya da geliştirme) ve model karşılaştırma stratejileri. Mutlak doğrulayıcı stratejiye göre araştırmacı sadece bir tek model oluşturur ve bu modelin veriye uygunluğunu test eder. Model veriye uygun ve yorumlanabilir sonuçlar üretmişse, dayandığı denence ya da yapı desteklenmiş sayılır ve bu uygun bir model olarak kabul edilir. İstatistiksel uyum değerleri modelin desteklenmediğini göstermişse, bu model reddedilir ve alternatif bir model sinanmaz. Model üretme stratejisinde belirli bir modelle sınama süreci başlatılır ve hesaplanan uyum istatistiklerinin anlamlılığı, modelin yorumlanabilirliği ve basitliği gibi ölçütler dikkate alnnarak, veriye ve denenceye en uygun olan model elde edilinceye kadar eldeki model sistematik bir şekilde yeniden biçimlendirilir. Bu stratejide her bir aşamada belirli parametreler sabitlenerek ya da serbest brrakılarak en iyi uyum indekslerine sahip olan model üretilmeye çalışılır. Burada özellikle LISREL kullanan araştırmacılar için modifikasyon indeksi (MI) hangi parametrelerin yeniden betimlenmesi ve tanımlanması gerektiğini ve her bir parametrenin değiştirilmesinde kazanılacak (kaybedilecek) varyans ve uyum değerlerini göstererek rehberlik eder. Ancak, MacCallum, Roznowski ve Necowitz (1992) ve MacCallum'un (1995) görgül araştırmalarla gösterdiği gibi, MI'nın çok fazla kullanılması ve makul bir açıklama getirmeksizin sadece uyum indekslerindeki iyileşme dikkate alınarak modelin üretilmesi ve revize edilmesi doğru bir strateji değildir. Bu stratejinin amaçsız bir şekil-
de kullanılması neredeyse her modelin eldeki veriye uygun olabileceği sonucunu doğurur. Önceden de vurgulandığı gibi, eğer MI temelinde parametreler değiştirilmişse bunun kuramsal ya da kavramsal olarak açıklanması ve doğrulanması gerekir. MacCallum'un (1995) yaptığı bir taramada model üretme stratejisi kullanan ve bunun için MI'e göre modifikasyon yapan 37 araştırmadan sadece altısı yeterli bir doğrulama yapmıştır. Bu sonuçlar MI'nın model üretme sürecinde yanlış kullanılabileceğini göstermektedir. Model üretme veriden modele doğru giden bir strateji olduğu için en yüksek uyum veren modelin araştırılması normal karşılanır. Ancak, bu yolla elde edilen model yeni bir örneklem üzerinde yeniden mutlak doğrulayıcı bir yöntemle sınanmalı ve modelin belirli bir örnekleme özgü olmadığı (ya da onunla sınırlı olmadığı) gösterilmelidir.

Model betimlemede üçüncü bir strateji ise alternatif modeller arasında karşılaştırmalar yapmaktır. Bu yaklaşımda araştırmacı genellikle belirli kuramlar ya da kavramsallaştırmalar temelinde önceden birden fazla model önerir ve bu modelleri aynı veri üzerinde karşılaştırır. Bu modeller literatürdeki tutarsız bulguları aydınlatmak üzere kurgulanmış alternatifler ya da farklı kuramları üstünlükleri bakımından karşılaştıran modeller olabilir (MacCallum, 1995). Her bir modelin uyum istatistikleri ve parametre değerleri incelenerek veriyi en iyi açıklayan ya da en güçlü desteklenen model ortaya çıkarılmaya çalışılır (model karşılaştırma stratejisine tipik bir örnek için bakınız, Sümer, Sümer, Demirutku ve Çiftçi, 2000).

YEM'de kullanılan matrisler, semboller ve çok sayıdaki uyum istatistikleri bu yaklaşımın çok karmaşık ve zor olduğu izlenimini verse de YEM yaklaşımı hem analiz tekniği açısından
daha kolay hem de geleneksel veri analiz yöntemlerinden çok daha kapsamlı ve esnektir. Hoyle'nin (1995) belirttiği gibi karmaşık ve ayrıntılı araştırma denenceleri YEM sayesinde, geleneksel yöntemlerden çok daha kolay test edilebilmektedir ve bu nedenle araştırmacılar tarafından daha çok tercih edilmeye başlanmıştır. Bundan sonraki bölümde daha önce farklı projeler kapsamında toplanmış verilerden yararlanarak DFA ve YEM için iki örnek uygulama sunulmaktadır. Bu uygulamaların temel amacı önerilen modelleri sınamak ve görgül literatüre katkı yapmak değil, YEM'in daha iyi anlaşılması için okuyuculara yukarıda anlatılan kavramların pratikte nasıl kullanıldığını göstermektir. Bu nedenle sinanan modellerin kuramsal tartışması yapılmamaktadır.

## Ömek Uygulama I: Doğrulayıcı Faktör Analizi

Bu uygulamada kullanılan veri, bağlanma ve çocuk yetiştirme stilleri konusunda 2000 yılında topladığım bir veriden alınmıştır. Araştırmaya 278 Üniversite öğrencisi katılmıştır. Bu araştırmada daha önce çocuk yetiştirme stilleri konusunda yaptığımız bir araştırma için geliştirdiğimiz (Sümer ve Güngör, 1999) Çocuk Yetiştirme Stilleri Ölçeğini kullandık. Toplanan verilerle ebeveynlerin çocuk yetiştirmeye ilişkin tutumlarının Maccoby ve Martin (1983) ile Steinberg ve arkadaşlarının (1994) önerdikleri iki temel boyut olan kabul/ilgi ve sıkı kontrol boyutlanıyla ölçülebileceği gösterilmiştir. Ölçekte 22 madde yer almaktadır (Bkz. Tablo 1), tek sayılı maddeler kabul ilgi boyutunu, çift sayılı maddeler sıkı kontrol boyutunu ölçmektedir. Ölçekteki 3 madde ters yönde kodlanarak değerlendirilmektedir. Katılımcılar anketi 5 noktalı likert tipi ölçeklerle ("tamamen doğru" dan "tamamen yanlış" a giden bir ölçek üzerinde) cevaplamışlardır. Anket orijinal formunda anne ve babalar
için ayrı ayrı doldurulmaktadır. Örnek uygulama olması nedeniyle, burada sadece Anne formundan elde edilen veriler kullanılmıştır. Yukarıda anlatılan kavramlara uygun olarak önce geleneksel yöntemle faktör analizi sonra da aynı maddeler üzerinde LISREL kullanılarak DFA yapılmıştır.

Geleneksel Faktör Analizi: DFA yapmadan önce geleneksel açıklayıcı faktör analizi yöntemi kullanılarak ölçeğin faktör yapısı incelenmiştir. Ölçeğin genel faktör yapısının, faktör özdeğerlerinin ve özdeğerlerin faktörlere karşı grafik gösteriminin yapıldığı "scree plot" testinin ayrnntılı incelenmesi ölçeğin öngörüldüğü gibi en iyi şekilde iki faktörle temsil edildiğini göstermiştir. Tablo 1'de sunulduğu gibi ortagonal rotasyon kullanılarak iki faktöre sınırlanarak yapılan geleneksel doğrulayıcı faktör analizde elde edilen iki faktör toplam varyansın \% 48 'ini açıklamıştır. Sıkı kontrol boyutunu temsil eden birinci faktör varyansın \% 32'sini açıklarken, kabul/ilgi boyutunu temsil eden ikinci faktör varyansın \% 16'sını açıklamaktadır. Faktör ağırlıklarında .35 kesme değeri olarak kabul edildiğinde bir maddenin (madde 08) iki faktörde birden yer aldığı ancak birinci faktördeki ağırlığının daha yüksek olduğu görülmektedir. Madde 17 ise aslında hemen hemen aynı ağırlıkla her iki faktörde de yük almıştır. Içeriğine bakıldığında bu maddenin kabul/ilgi boyutuna ait olduğu söylenebilir. Ancak bu maddenin boyutları iyi ayırmadığı da kabul edilmelidir. Genel olarak faktör analizi 22 maddenin iki alt boyutu temsil ettiğini göstermektedir. Maddelerin faktörlerden aldıkları ağırlıklar .50 ile .78 arasında değişmektedir. "Communality" değerlerinin incelenmesinde madde 11,13 , ve 21 'in görece düşük $h^{2}$ değerlerine sahip olduğu ve diğer maddelerle daha zayıf düzeyde ilişkili oldukları
anlaşılmaktadır. Bu bilgiler ölçeğin yapı geçerliği konusunda bazı bilgiler vermesine karşn, gözlenen verinin iki boyutlu önerilen modele ne oranda uyum gösterdiği ve maddelerin görece kalitesi hakkında pek fazla bilgi vermemektedir. Karşılaştırma amacıyla aynı örneklem üzerinde LISREL kullanılarak DFA yapılmıştır.

Doğrulayıcı Faktör Analizi: LISREL kullanılarak yapilan DFA uygulamasında 22 maddeden elde edilen korelasyon matrisi veri olarak kullanılmıştır. Model tanımlamasında ölçekte öngörüldüğü gibi maddelerin iki genel faktör tarafından temsil edileceği ve 11 maddenin (tek sayılı maddeler) kabul/ilgi boyutunu, $11 \mathrm{mad}-$ denin de (çift sayılı maddeler) sıkı kontrol bo-
yutu altında yer alacağ1 denencesi sınanmıştır. Iki gizil değişkenli bu modelin sınanmasında, ilk aşamada modelde hiçbir sınırlama ya da yeni bağlantı ekleme yoluna gitmeden modelin uyum istatistikleri ve modifikasyon indeksi (MI) sonuçları ayrıntılı olarak incelenmiştir. Ilk analiz sonucunda başta Ki Kare ve GFI değerleri olmak üzere uyum indekslerinin çoğu modelin yetersiz olduğunu göstermiştir. Ancak, elde edilen MI değerleri incelendiğinde bazı maddelerin hataları arasında yüksek düzeyde korelasyon olduğunu göstermiştir. Yukarıda anlatıldığ1 gibi MI sabit bir parametrenin eklenmesi (serbest birakılmas1) ya da yeni parametrenin eklenmesi sonucu Ki Kare değerinde elde edilecek

Tablo 1. Çocuk Yetiştirme Stilleri maddeleri üzerinde geleneksel yöntemle faktör analizi

|  | Faktör 1 <br> Kontrol | Faktör 2 <br> Kabul/ilgi | h $^{2}$ |
| :--- | :---: | :---: | :---: |
| (12) Ne zaman, ne yapmam gerektiği konusunda talimat verirdi | .78 | -.02 | .61 |
| (02) Her davranışımı sıkı sıkıya kontrol etmek isterdi | .77 | -.02 | .60 |
| (04) Onun istediği hayatı yaşamam konusunda hep ısrarlı olmuştur | .73 | -.23 | .59 |
| (16) Arkadaşlarımla geç saate kadar dışarıda kalmama izin vermezdi | .72 | -.01 | .52 |
| (22) Arkadaşlarımıa dışarı çıkmama nadiren izin verirdi | .68 | -.15 | .48 |
| (06) Arkadaşlanmla ilişkilerime çok karışırdı | .66 | -.14 | .45 |
| (18) Boş zamanlarımı nasıl değerlendireceğime karışırdı | .65 | -.06 | .43 |
| (08) Onunkinden farklı bir görüşe sahip olmama genellikle tahammül edememiştir | .62 | -.36 | .52 |
| (14) Geç saatlere kadar oturmama izin vermezdi | .60 | -.02 | .36 |
| (20) Hangi saatte hangi arkadaşımla buluşacağımı bilmek isterdi | .59 | .21 | .39 |
| (10) Kurallarına aykıı davrandığımda beni kolaylıkla affetmezdi | .57 | -.29 | .41 |
| (17) Onun düşüncelerine ters gelen bir şey yaptığımda suçlamazdı | -.51 | .50 | .51 |
| (05) Sorunlarım olduğunda onları daha açık bir şekilde görmemde yardımcı olmuştur | -.20 | .77 | .63 |
| (03) Nasıl davranacağım, ne yapacağım konusunda bana hep yararlı fikirler vermiştir | -.14 | .75 | .59 |
| (07) Sorunlarımı çz̈zmemde destek olurdu | -.15 | .74 | .57 |
| (01) Benimle sık sık rahatlatıcı bir şekilde konuşurdu | -.29 | .73 | .62 |
| (09) Sevgi ve yakınlığına her zaman güvenmişimdir | -.23 | .70 | .54 |
| (15) Onunla birbirimize çok bağlıydık | -.21 | .69 | .52 |
| (19) Bir sorunum olduğunda bunu hemen anlardı | -.09 | .63 | .40 |
| (11) Hiçbir zaman fazla yakın bir iliş̧kimiz olmadı | .13 | .52 | .29 |
| (13) Bir problemim olduğunda ona anlatmaktansa, kendime saklamayı tercih ederdim | .11 | .52 | .28 |
| (21) Hiçbir zaman benim ne hissettiğimle veya ne düşündüğümle gerçekten ilgilenmedi | .05 | .47 | .22 |
| Özdeğerler | 7.05 | 3.47 |  |
| Açıklanan Varyansın Yüzdesi | 32.04 | 15.77 |  |

düşmeyi (modelin ne oranda iyileşeceğini) gösterir. MI özellikle madde 11 ile 21 ve madde 14 ile 16 arasında modelin öngördüğünden çok yüksek korelasyonlar olduğunu ve bunların hatalarının yüksek düzeyde ilişkili olduğunu işaret etmektedir. MI, madde 11 ile 21 arasındaki korelasyonlarının serbest bırakılmasının Ki Kare değerinde 186.10 'luk bir düşmenin elde edileceğini, 14 ve 16 maddeler arasındaki bağlantının modele eklenmesinin ise 62.7 değerinde bir düşmeyle sonuçlanacağını göstermektedir. Gerçekten de maddeler arasındaki korelasyonlar incelendiğinde bu maddelerin çok yüksek düzeyde ilişkili olduğunu göstermektedir. Örneğin madde 11 (Hiçbir zaman fazla yakın bir ilişkimiz olmadı) ve madde 21 (Hiçbir zaman benim ne hissettiğimle veya ne düşündüğümle gerçekten ilgilenmedi) arasındaki korelasyon .83 'dür ve bu maddelerin aynı şeyi ölçtüğünü ve bunlardan birinin gerçekte gereksiz olduğunu göstermektedir. Benzer şekilde madde 14 (Geç saatlere kadar oturmama izin vermezdi) ve madde 16 (Arkadaşlarımla geç saate kadar dışarıda kalmama izin vermezdi) arasındaki korelasyon da . 63 'tür ve bu maddelerin de aynı anlama geldiği açıktır.

Dolayısıyla henüz uyum indekslerini ayrıntılı olarak incelemeden DFA sonuçları ölçekteki bazı maddelerin gereğinden fazla ilişkili olduğu, çok benzer özellikleri ölçtüğü ve bunların gözden geçirilmesi gerektiği konusunda ipuçlar1 vermektedir. Bunlara ek olarak MI, Madde 13 'ün de hem 11 hem de 21 ile yüksek düzeyde ilişkili olduğunu göstermektedir. Ancak, örnek uygulamayı daha da karmaşık hale getirmemek için modelde başka bir revizyon yapılmamış ve adı geçen iki hata korelasyonu (iki bağlantı) modele eklenerek model sınanmıştır. Model sonuçlarının grafik gösterimi Şekil 3'de sunul-
maktadır. Şekilde görüldüğü gibi, geçmiş çalışmalarla tutarlı olarak kabul/ilgi ve sıkı kontrol boyutları (gizil değişkenleri) arasında olumsuz yönde orta düzeyde güçlü (-.42) bir ilişki vardır. Genel olarak faktör ağırlıkları 25 (madde 21) ile 80 (madde 5) arasında değişmektedir ve bütün ağırlıklar istatistiksel olarak anlamlıdır. Ancak, sıkı kontrol boyutundaki maddeler . 46 ile .78 arasında değiştiği ve bu boyuttaki maddelerin daha az hata kovaryansina sahip oldukları ve görece daha iyi bir yapı geçerliği sergilediği söylenebilir. Kabul/ilgi boyutunda ise daha önce MI' de sorunlu olarak görülen madde 21, 11 ve 13 en düşük ağırıklarla temsil edilmişlerdir (sırasıyla .25 , .27 ve .30 ) ve ölçek gözden geçirildiğinde bu maddelerin yeniden ele alınmasının yararlı olacağı söylenebilir. Modele eklenen iki bağlantının (madde 11 ve 21 ile madde 14 ve 16 arasındaki bağlantılar) yüksek düzeyde hata ilişkisi gösterdiği de (sırasıyla . 76 ve .34) model üzerinde gösterilmektedir. Şekil 3'de gösterildiği gibi eklenen bütün bağlantılar ve bunlara ilişkin değerler modelde gösterilmelidir. Modeldeki bütün şekiller geleneksel olarak YEM işaretleme ve şekil gösterim ilkeleri dikkate alınarak hazırlanmıştır.

Uyum indeksleri incelendiğinde ise $\chi^{2}$ değerinin 790.37 olduğu ve bunun istatistiksel olarak anlamlı olduğu görülmektedir ( $\mathrm{p}<.001$ ). Ancak, $\mathrm{SD}=206$ olduğu dikkate alındığında $\chi^{2}$ /SD oranının istenilen 5:1 oranın altında olduğu ve modelin orta düzeyde uyum gösterdiği söylenebilir. Uyum istatistiklerinden en çok göze çarpan hatalar arasındaki ilişkiye duyarlı olan RMSEA değerinin . 10 olduğudur. Görece yüksek ancak kabul sınırlarında olan bu değer bazı maddeler arasındaki çok yüksek ilişkinin bir yansımasıdır ve genellikle bu tür çok maddeli ölçeklerde tipik bir sorundur. Diğer indeksler


Şekil 3. Çocuk Yetiştirme Stilleri Ölçeği maddeleri üzerinde Doğrulayıcı Faktör Analizi
ise, $\mathrm{GFI}=.80$, $\mathrm{AGFI}=.76, \mathrm{CFI}=.83$, $\mathrm{NNFI}=.79$ şeklindedir. Bu değerler modelin veriye uygunluğunun marjinal düzeyde olduğunu, bazı maddeler çıkarılarak ya da yeniden yazılarak modelin yeniden sınanmasının yararlı olacağını göstermektedir. Uyum istatistikleri raporlarda genellikle şu şekilde ve sırada verilmektedir: ( $\chi^{2}$ $(206, \mathrm{~N}=276)=790.37, \mathrm{p}<.001$, RMSEA $=$ $.10, \mathrm{GFI}=.80, \mathrm{AGFI}=.76, \mathrm{CFI}=.83, \mathrm{NNFI}=$ .79).

Model yukarıda anlatıldığı gibi bazı alternatif modellerle karşılaştrrılarak da incelenmiştir. Örneğin bütün maddelerin tek bir faktör altında toplandığı Harman tek faktör modeli test edilmiş ve bunun önerilen iki faktör modelinden çok daha kötü uyum değerlerine sahip olduğu görülmüştür $\left(\left(\chi^{2}(207, N=276)=2476.69, \mathrm{p}<\right.\right.$ $.001, \mathrm{RMSEA}=.20, \mathrm{GFI}=.55, \mathrm{AGFI}=.45, \mathrm{CFI}$ $=.61$, NNFI $=.57$ ). Ayrica, modelde tekrarlı maddelerin bazılarının çıkarılmasının (örneğin 21 ve 16) modelin uyum değerlerini ileri düzey-
de iyileştirdiği ve iki faktörlü yapının daha güçlü olarak desteklendiği görülmüştür.

## Örnek Uygulama II: Yapısal Essitlik Modeli

Bu uygulamada yukarda Şekil 1 ve 2 'de önerilen model sinanmaktadır. Bu örnekte kullanılan veri daha önce ODTÜ AFP kapsamında desteklenen sürücü davranışları konusundaki bir veriden alınmıştır (Bu projede kullanılan değişkenlerin kapsamlı tanımı için bakınız, Sümer ve Özkan, Basımda). Farklı sürücü gruplarından oluşan 295 sürücüye çok sayıda ölçek uygulanmıştır. Önerilen modelde kullanılan değişkenler ise Arnett'in (1994) Uyaran Arama (20 madde), Buss ve Perry'nin (1992) Saldırganlık Ölçeği (29 madde), Reason ve arkadaşlarının (1990) Sürücü Davranışları Ölçeğinin (28 madde) ikişer alt ölçeğinden oluşmaktadır. Ayrıca, ortalama hızı ölçmek için, sürücülere şehir içi ve şehirlerarası yollarda kullandıkları ortalama hız birer soruyla ölçülmüş ve cevaplar iki ayrı gösterge değişken olarak kullanılmıştır. Önerildiği
gibi model sınama iki aşamada gerçekleştirilmiştir. Önce ölçüm modeli daha sonra da önerilen yapısal model test edilmiştir.
ilgili göstergelerin güvenirlik katsayıları olarak kabul edilir. Önerilen modelde en yüksek güvenirlik sıradan ihlaller değişkenine aittir. Model


Şekil 4. Örnek Uygulama: Doğrulayıcı Faktör Analizi

## Ölçüm Modeli

Yukarıda anlatıldığı gibi, ölçüm modeli gösterge değişkenlerle gizil değişkenler arasındaki ilişkileri değerlendirmek ve gizil değişkenler arasındaki yapısal korelasyonları saptamak amacıyla yapılmaktadır. Şekil 4'de gösterildiği gibi 8 dikdörtgen gösterge değişkenleri göstermektedir. Elipsler ise 4 gizil değişkeni temsil etmektedir. Gizil değişkenlerden göstergelere giden tek uçlu oklar, bu değişkenleri gizil yapılarla ilişkilendiren regresyon katsayiları ya da gösterge ağırlıklarıdır. Modelde bu değerler . 57 (saldırgan ihlaller) ile . 97 (siradan ihlaller) arasında değişmektedir. Her bir değişkene ilişkin hata oranı ise değişkene dışarıdan uzanan oklarla gösterilmektedir. Bunlar eşitlikteki hatadan çok gösterge değişkendeki hataya karşılık gelir ve ölçüm hatası olarak görülebilir (Jöreskog ve Sörbom, 1993). LISREL çıktısında her bir eşitlik için açıklanan varyanslar da ( $\mathrm{R}^{2}$ ) verilmektedir (regresyon katsayıların karesi). Bu değerler
veriye iyi uyum sağladığında ise regresyon katsayıları da geçerlik katsayıları olarak değerlendirilir ve böylece ölçüm modeli değişkenlerinin güvenirliği, geçerliği ve ölçüm hatalarına ilişkin bilgiler, elde edilmiş olur.

Gizil değişkenler arasındaki yapısal korelasyonlar ise önerilen ilişkilerin yönüne ve gücüne ilişkin bilgi verirler. Şekil 4'deki modelde bütün yapısal korelasyonlar istatistiksel olarak anlamlıdır ve beklendik yöndedir. En güçlü ilişki uyaran arama ve saldırganlık gizil değişkenleri arasında (.56); en zayıf ilişki ise saldırganlık ve hız gizil değişkenleri arasında (.24) gözlenmektedir.

Önerilen modelin veriye uygunluğu incelendiğinde modelin $\chi^{2}$ değeri . 05 düzeyinde anlam11 olmasına karşın ( $p=.048$ ), hem $\chi^{2} /$ SD oranı hem de diğer uyum istatistiklerinin ölçüm modelinin veriye çok iyi düzeyde uyduğunu göstermektedir $\left(\left(\chi^{2}(14, \mathrm{~N}=295)=24.01, \mathrm{p}<.05\right.\right.$,

RMSEA $=.05, \mathrm{GFI}=.98, \mathrm{AGFI}=.95, \mathrm{CFI}=$ $.98, \mathrm{NNFI}=.96) . \mathrm{Bu}$ sonuçlar değişkenlerin gizil değişkenleri yeterli düzeyde temsil ettiklerini ve ölçüm modelinin herhangi bir revizyona gerek duymaksızın, aynı göstergelerle önerilen yapısal modeli sınamada kullanılabileceğini göstermektedir.
nulduğu için yapısal modelde bağımsız göstergeler "X" (X1- X4) bağımlı göstergeler de "Y" değişkenleri (Y1-Y4) ile gösterilmiştir. Modelde görüldüğü gibi uyaran arama hem ihlalleri (Yapısal Katsayı $=.39, \mathrm{p}<.05$ ) hem de hızı (Yapısal Katsayı $=.29, \mathrm{p}<.05$ ) doğrudan anlamlı düzeyde yordamaktadır. Saldırganlık gizil de-


Şekil 5. Örnek Uygulama: Yapısal Eşitlik Modeli

## Yapisal Model:

Hatırlanacağ1 gibi yapısal modelin temel amacı gizil değişkenler arasındaki ilişkiyi tanımlamak ve önerilen denenceyi test etmektir. Önce Şekil 4'te gösterilen model tam tanımlanmış model olarak sınanmış daha sonra önerildiği şekilde saldırganlıktan hıza giden bağlantı sabitlenerek test edilmiştir. Ölçüm modeli ve tam tanımlanmış model aynı sayıda parametre ile tanımlandığı için bu modellerin uyum istatistikleri aynıdır. Ölçüm modelinden farklı olarak gizil değişkenler arasındaki yordayıcı yapısal katsayllar (bir anlamda beta değerleri) incelendiğinde saldırganlığın hızı anlamlı düzeyde yordamadığı, diğer yapısal katsayıların ise anlamlı olduğu gözlenmiştir. Şekil 5'de önerilen modele ilişkin sonuçlar sunulmaktadır. Daha önce ölçüm modelinde göstergelere ilişkin değerler su-
ğişkeni ihlalleri (Yapısal Katsayı $=.21, \mathfrak{p}<.05)$, ihlaller de hızı doğrudan anlamlı düzeylerde yordamaktadır (Yapısal Katsayı $=.35, \mathrm{p}<.05)$.

Modelde hem uyaran arama hem de saldırganlığın ihlaller aracilığıyla hız üzerindeki dolaylı etkilerinin anlamlı olup olmadığını test etmek mümkündür. Bulgular, saldırganlığın dolaylı etkisinin istatistiksel olarak anlamlı olmadığını (.07), ancak uyaran aramanın hız üzerinde anlamlı bir etkiye sahip olduğunu göstermektedir (.14, $\mathrm{p}<.05$ ). Son olarak gizil bağımlı değişkenlerde açıklanan varyans oranları da gösterilmektedir (şekilde açıklanamayan varyanslar, yani hata oranları verilmektedir; bu değerler " 1 "den çıkarılarak açıklanan varyanslar bulunabilir). Iki bağımsız değişken ihlallerin \% 27’sini açıklamaktadır (1-.73). thlaller ise hızdaki varyansın \% 30'unu (1-.70) açıklamak-
tadır. Bu oranın üzerine dolaylı etkilerle açıklanan varyansin da eklenmesi gerekir.

Kısaca önerilen modelde elde edilen değerler, uyaran arama ve saldırganlığın ihlalleri anlamlı düzeylerde yordadığını, ayrıca ihlallerin doğrudan, uyaran aramanın da hem doğrudan hem de ihlaller arcılığıyla hızı anlamlı düzeylerde yordadığını göstermektedir. Bu bulgular, geçmiş çalışmalarla uygun olarak (örneğin, Jonah, 1997) uyaran aramanın ihlalleri ve hizı yordayan önemli bir kişilik özelliği olduğunu göstermektedir. Uyum değerleri incelendiğinde önerilen modelin veriye mükemmel düzeyde uyum gösterdiği gözlenmiştir (( $\chi^{2}(15, \mathrm{~N}=$ 295) $=24.93, \mathfrak{p}<.05, \mathrm{RMSEA}=.05, \mathrm{GFI}=.97$, AGFI $=.95, \mathrm{CFI}=.98$, NNFI $=.97$ ). Tam tanımlanmış modelle önerilen model arasındaki farkın da istatistiksel olarak anlamlı olmadığı gözlenmiştir. Bu da modelde sabitlenen saldırganlık ile hız arasındaki bağlantının modele herhangi bir katkıda bulunmadığına işaret etmektedir. Model yukarıda anlatıldığ şekilde başta Harman modeli olmak üzere istatistiksel alternatiflerle karşılaştrrılmış ve önerilen modelin bu alternatiflerden anlamlı düzeylerde veriye daha iyi uyum sağladığı saptanmıştır.

## Sonuç

Gizil değişkenler arasındaki ilişkileri analiz etme kapasitesi ve ölçüm hatalarını kontrol ederek evren parametrelerine yakın değerler vermesi nedeniyle her geçen gün araştırmacıların daha çok ilgisini çeken YEM, yanlı̧ kullanma riski ve esneklikleri nedeniyle de biraz kafa karışturan bir yöntem görünümündedir. Yukarıdaki örneklerden de anlaşılacağı gibi analiz şekli farklı olsa da sonuçta YEM ile elde edilenler bizim yıllardır kullandığımız yöntemlerle elde ettiklerimize benzemekte, sadece bulguları daha
kapsamlı olarak ve "model" dili kullanarak sunmaktadır. Diğer çok değişkenli istatistikler gibi YEM de bazı temel kuralların ve sayıltıların karşılanması durumunda doğru kullanılabilen bir yaklaşımdır. Araştırmacılar özellikle YEM'in yanlış kullanımlarına ve sınırlıklarına karşı dikkatli olmalıdır. YEM'in iyi anlaşılması için başta regresyon, aracı değişkenli analizler, faktör analizleri gibi tekniklerin, bunlarla ilgili kavramların, analiz amaçlarının ve mantığının iyi anlaşılması gerekir. Akılda tutulması gereken temel kavram ve sınırlılıkların başında "nedensellik" ve "doğrulayıcılık" sorunları gelmektedir. YEM istatistiksel olarak nedensel modelleri sınamasına karşın, bu özünde araştırmacının kurguladığı bir nedenselliktir ve bulunan "nedensel" sonuç, model uyumu açısından desteklense de gerçekte böyle bir nedenselliğin mutlak olarak var olduğu anlamına gelmez. Bir modelde bağımlı ve bağımsız değişkenlerin yerini değiştirdiğimizde istatistiksel olarak farklı bir modeli yine "nedensel" olarak destekleyebilir, modelimizi "doğrulayabiliriz". Nedenselliğin korelasyonlara (kovaryans matrisine) dayalı olarak elde edilmiş bir nedensellik olduğu ve bunun doğrulandığı akıldan çıkarılmamalıdır. Bu nedenle YEM'de alternatif modellerin s1nanması ve "yanlışlamanın" temel alınması daha bilimsel bir yaklaşımdır. Itstatistiksel sayıltılara ve sınırllıklara gelince; öncelikle diğer çok değişkenli teknikler gibi YEM de özünde standart doğrusal modeller kapsamındadır ve analiz ettiği veriler arasındaki ilişkilerin doğrusal olduğunu kabul eder. Değişkenlerin genel yapısı ve ilişkiler doğrusallık sayıltısını karşılamıyorsa, YEM ile elde edilen bulguların geçerliğine kuşkuyla yaklaşılmalıdır. Bütün çok değişkenli analizler için geçerli olan başka bir sayıltı da ölçümlerin (gözlemlerin) bağımsızlığı ilkesidir. Bu nedenle YEM'in en iyi uygulama alanlarm-
dan biri "çoklu yöntem çoklu özellik" yaklaşımının kullanıldığı araştırmalardır (Örneğin, Marsh ve Grayson, 1995). Bir başka sayıltı ise normalliktir. Hem değişkenlerin hem de değişken kombinasyonlarının normal dağılım göstermesi beklenir. Gerçi kullandığı "maksimum olasılığa" dayalı çıkarım yöntemi sayesinde YEM'in bu sayıltılardan küçük sapmalara karşı korunaklı olduğu kabul edilse de (Hoyle, 1995), yine de analizden önce bu sayılttların ne oranda karşılandığı kontrol edilmelidir. Son olarak YEM modelinde sonradan yapılan her türlü revizyon ve modifikasyon mutlaka bir temele dayandırılmalı ve gerektiğinde yeni bir veri seti üzerinde sınanmalıdır. Bu tür sayıltıların karşılanmadığı ve eldeki verinin "normal" olmadığ1 durumlarda yapılacak yeni analizler için kullanılan YEM yöntemleri de hızla geliştirilmektedir. Özellikle farklı veri türlerinin, kayıp değer içeren verilerin ve çok sayıda örneklemin paralel analizinin gerektiği durumlar için de yeni analiz teknikleri önerilmektedir. Nesnel ve geçerliği yüksek bir araştırma sonucu elde etmek için araştırmacıların YEM'in sınırlılıklarının farkında olması ve alternatif yaklaşımlara açık olması gerekir.

## Kaynakça

Anderson, J. C. \& Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411-423.

Arnett, J. (1994). Sensation Seeking: A new conceptualization and a new scale. Personality and Individual Differences, 16, 289-296.
Biddle, B. J., \& Marlin, M. M. (1987). Causality, confirmation, credulity, and structural equation modeling. Child Development, 58,4-17.
Buss, A.H. \& Perry, M. (1992). The Aggression Questionnaire. Journal of Personality and Social Psychology, 63, 452-459.

Baron, R. M., \& Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.

Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419-456.
Chou, C. P., \& Bentler, P. M. (1995).
Hoyle, R. H. (1991). Evaluating measurement models in clinical research: Covariance structure analysis of latent variable models of self-conception. Journal of Consulting and Clinical Psychology, 59, 67-96.

Hoyle, R. H. (1995). Structural Equation Modeling: Concepts, Issues, and Application. London: Sage.

Hoyle, R. H., \& Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Application (pp. 158-177). London: Sage.

Hu, L., \& Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Application. (pp. 76-100). London: Sage.
James, L. R., Mulaik, S. A., \& Brett, J. M. (1982). Causal analysis: Assumptions, models, and data. Beverly Hills, CA: Sage. In Mulaik, S. A. \& James, L. R. (1995). Objectivity and reasoning in science and structural equation modeling. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and application (pp. 118-137). London: Sage.

Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger \& O. D. Duncan (Eds.), Structural Equation Models in the Social Sciences (pp. 85-112). New York: Academic.

Jöreskog, K. G. (1993). Testing structural equation models. In K. A. Bollen \& J. S. Long (Eds.), Testing Structural Equation Models (pp.294-316). Newbury Park, CA: Sage.

Jöreskog, K. G., \& Sörbom, D. (1993). LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

Judd, C. M., Jessor, R., \& Donovan, J. E. (1986). Structural equation models and personality research. Journal of Personality, 54, 445-481.

Kelloway, E.. K. (1998). Using LISREL for Structural Equation Modeling: A Researcher's Guide. Thousand Oaks, CA: Sage

Kenny, D. A., Kashy, D. , Bolger, N. (1998). Data analysis in social psychology. In D.T. Gilbert, S.T. Fiske et al. (1998). The Handbook of Social Psychology, Vol. 2 (4th ed.). (pp. 233-265). Boston, MA, USA: Mcgraw-Hill.
Loehlin, J. C. (1992). Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis.. Hillsdale, NJ: Lawrence Erlbaum.

MacCallum, R. C., Roznowski, M., \& Necowitz, L. B. (1992). Model modification in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490-504
MacCallum, R. C. (1995). Model specification procedures, strategies, and related issues. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Application (pp. 16-35). London: Sage.

Maccoby, E., Martin, J. (1983). Socialization in the context of the family: Parent-child interaction. In E. M. Hetherington (Ed.), P. H. Mussen (Series Ed.), Handbook of Child Psychology: Vol. 4. Socialization, Personality, and Social Development (pp. 1-101). New York: Wiley.
March, H. W., \& Grayson, D. (1995). Latent variable models of multitrait-multimethod data. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Application (pp. 177-198). London: Sage.
Marsh, H. W., \& Hocevar, D. (1988). A new, more powerful approach to multitrait-multimethod analyses: Application of second-order confirmatory factor analysis. Journal of Applied Psychology, 73, 107-117.

Mulaik, S. A. (1987). Toward a conception of causality applicable to experimentation and causal modeling. Child Development, 58, 18-32.

Mulaik, S. A. , \& James, L. R. (1995). Objectivity and reasoning in science and structural equation modeling. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Application (pp. 118-137). London: Sage.
Reason, J., Manstead, A., Stradling, S., Baxter, J., \& Campbell, K. (1990). Errors and violations on the roads. Ergonomics, 33, 1315-1332.

Steinberg, L., Lamborn, S. D., Darling, N., Mounts, N. S., \& Dornbusch, S. M. (1994). Over-time changes in adjustment and competence among adolescents from authoritative, authoritarian, indulgent, and neglectful families. Child Development, 65, 754-770.
Sümer, N., \& Güngör, D. (1999). Çocuk yetiştirme stillerinin bağlanma stilleri, benlik değerlendirmeleri ve yakın ilişkiler üzerindeki etkisi. Türk Psikoloji Dergisi, 14, 35-58.
Sümer, N., \& Özkan, T. (Basımda). Süriücü Davranışları, Becerileri, Bazı Kişilik Özellikleri ve Psikolojik Belirtilerin Trafik Kazalarındaki Rolleri. Türk Psikoloji Dergisi.
Sümer, H. C., Sümer, N., Çifci, O. S., \& Demirutku, K. (2000). Subay kişilik özelliklerinin ölçülmesi ve yapı geçerliģi çalışması. Türk Psikoloji Dergisi, 15, 15-36.
Tabachnick, B. G., \& Fidell, L. S. (2000). Using Multivariate Statistics (4th edition). New York: Harper Collins Publishers, Inc.


[^0]:    *Yazı̧̧ma Adresi: Doç. Dr. Nebi Sümer, ODTŬ Psikoloji Bölümü, 06531 Ankara.
    E-posta: nsumer@metu.edu.tr
    Yazar notu: Şekillerin çizilmesindeki yardımlarından dolayı Araş. Gör. Sinan Ulu'ya teşekkür ederim.

[^1]:    ${ }^{1}$ YEM konusunda Türkçe kaynaklar mevcut olmadığı için Ingilizce terimlerin Türkçe karşılıklarını genel bilgilerime dayanarak bulmaya çalıştım. Ancak, Dr. Adnan Erkuş'un bu sayıdaki makalesinde de belirttiği gibi bu karşılıklardan bazılanı istatistiksel kavramları tam olarak yansıtmayabilir. Okuyucular bu konuda dikkatli olmalı ve daha iyi ve kavramı tam yansıtan karşılıkların bulunması durumunda bu kavramların Türkçelerinin deǧişebileceğini göz önünde bulundurmalıdırlar.

